Asynchronous Accelerated Stochastic Gradient Descent
نویسندگان
چکیده
Stochastic gradient descent (SGD) is a widely used optimization algorithm in machine learning. In order to accelerate the convergence of SGD, a few advanced techniques have been developed in recent years, including variance reduction, stochastic coordinate sampling, and Nesterov’s acceleration method. Furthermore, in order to improve the training speed and/or leverage larger-scale training data, asynchronous parallelization of SGD has also been studied. Then, a natural question is whether these techniques can be seamlessly integrated with each other, and whether the integration has desirable theoretical guarantee on its convergence. In this paper, we provide our formal answer to this question. In particular, we consider the asynchronous parallelization of SGD, accelerated by leveraging variance reduction, coordinate sampling, and Nesterov’s method. We call the new algorithm asynchronous accelerated SGD (AASGD). Theoretically, we proved a convergence rate of AASGD, which indicates that (i) the three acceleration methods are complementary to each other and can make their own contributions to the improvement of convergence rate; (ii) asynchronous parallelization does not hurt the convergence rate, and can achieve considerable speedup under appropriate parameter setting. Empirically, we tested AASGD on a few benchmark datasets. The experimental results verified our theoretical findings and indicated that AASGD could be a highly effective and efficient algorithm for practical use.
منابع مشابه
Accelerating Asynchronous Algorithms for Convex Optimization by Momentum Compensation
Asynchronous algorithms have attracted much attention recently due to the crucial demands on solving large-scale optimization problems. However, the accelerated versions of asynchronous algorithms are rarely studied. In this paper, we propose the “momentum compensation” technique to accelerate asynchronous algorithms for convex problems. Specifically, we first accelerate the plain Asynchronous ...
متن کاملAsynchronous Stochastic Gradient Descent with Variance Reduction for Non-Convex Optimization
We provide the first theoretical analysis on the convergence rate of the asynchronous stochastic variance reduced gradient (SVRG) descent algorithm on nonconvex optimization. Recent studies have shown that the asynchronous stochastic gradient descent (SGD) based algorithms with variance reduction converge with a linear convergent rate on convex problems. However, there is no work to analyze asy...
متن کاملIS-ASGD: Importance Sampling Accelerated Asynchronous SGD on Multi-Core Systems
Variance reduction (VR) algorithms for convergence acceleration of stochastic gradient descent (SGD) have been developed with great efforts recently. Its two variants, stochastic variance-reduced-gradient (SVRG) and importance sampling (IS) have achieved impressive progresses. Meanwhile, asynchronous SGD (ASGD) is becoming more important due to the ever-increasing scale of optimization problems...
متن کاملConditional Accelerated Lazy Stochastic Gradient Descent
In this work we introduce a conditional accelerated lazy stochastic gradient descent algorithm with optimal number of calls to a stochastic first-order oracle and convergence rate O( 1 ε2 ) improving over the projection-free, Online Frank-Wolfe based stochastic gradient descent of Hazan and Kale [2012] with convergence rate O( 1 ε4 ).
متن کاملDecoupled Asynchronous Proximal Stochastic Gradient Descent with Variance Reduction
In the era of big data, optimizing large scale machine learning problems becomes a challenging task and draws significant attention. Asynchronous optimization algorithms come out as a promising solution. Recently, decoupled asynchronous proximal stochastic gradient descent (DAP-SGD) is proposed to minimize a composite function. It is claimed to be able to offload the computation bottleneck from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016